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Introduction

Methods

Key Findings

Results

•Tested the Metacognitive agent with 10 questions of each category 
“Task”, ”Method”, “Knowledge”
•Method questions showed high variance in confidence scores possibly 
due to Chain of Thought Prompting 
•A few relevant  and valid TMK questions resulted in “Cannot Answer 
Response”
•Some of the responses were incorrect. For example,

– There was a different response to the following equivalent 
questions: Why does a cow eat grass? And Why does a cow 
consume grass? 

Analyses

Conclusion and Future Work

We started with the hypotheses that if an AI agent had a metacognition model of itself, 
it will be able to explain itself to a human user. 

1. We were able to develop a proof of concept for such an agent 
2. While we tested our questions, a few categorizations were incorrect. 
3. However,  we were able to peek inside the agent’s “mind” with:

– The Top relevant documents searched and the associated confidence 
scores 

– The chain of thought prompting that gave us the sequence of nodes in a 
decision tree 

– The intermediate steps that it went through to arrive at the final answer

• There is tremendous work to be done before we can say an AI agent can fully 
explain itself, notably in the following areas:

– What framework should we use for evaluation of self-explanation (accuracy, 
completeness, relevance or something else)?

– The output is still not completely transparent and depends on user domain 
knowledge. 

– Do we need to add more models to improve the accuracy of search results?
– How do we send dynamic episodic data to enable the AI agent to provide 

real-time responses of why it made a particular decision/produced a 
particular response?
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• We decided to test this hypotheses* on Vera that is experimental AI agent. Our 
methodology included the creating the metacognition of AI agent using:

– TMK Representation
– Langchain to work with LLMs
– LLMs to generate responses

RQ: How do we make AI agents transparent?

Issue 1.1: How do we 
enable AI agents to 
explain itself?

H: By giving the AI agent a model of itself that it can 
use for its metacognition. The agent can use this 
metacognition to explain itself 

*The architecture of Metacognitive agents was created by former students of DILAB. Please see 
acknowledgements. This work involved extending and developing a proof of concept in Vera 
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The metacognitive agent was able to correct classify most questions into correct 
categories using the FAISS similarity search techniques  

Our output from the AI agent consisted of the following components:

Category of question 
and top similar 
relevant documents 

Localized part of Self-
Model that contained 
responses 

Chain of Thought 
reasoning to generate 
responses 

Type of Question Model Confidence Score 

Task Multi-models / Can’t Answer 61-69

Method Mmodel / Can’t Answer 49 - 76

Knowledge Multi-models / Can’t Answer 60 - 69

Semantic 
search

1. The metacognition within VERA produced the following output:

Top ”k” relevant documents 
with confidence scores

Multimodel Output Mmodel Output

Intermediate steps that led 
to the final answer

Final Answer 
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